Recommender Searching Mechanism for Trust - Aware Recommender Systems in Internet of Things

نویسندگان

  • Weiwei Yuan
  • Donghai Guan
  • Lei Shu
  • Jianwei Niu
چکیده

Intelligent things are widely connected in Internet of Things (IoT) to enable ubiquitous service access. This may cause heavy service redundant. The trust-aware recommender system (TARS) is therefore proposed for IoT to help users finding reliable services. One fundamental requirement of TARS is to efficiently find as many recommenders as possible for the active users. To achieve this, existing approaches of TARS choose to search the entire trust network, which have very high computational cost. Though the trust network is the scale-free network, we show via experiments that TARS cannot find satisfactory number of recommenders by directly applying the classical searching mechanism. In this paper, we propose an efficient searching mechanism, named S_Searching: based on the scale-freeness of trust networks, choosing the global highest-degree nodes to construct a Skeleton, and searching the recommenders via this Skeleton. Benefiting from the superior outdegrees of the nodes in the Skeleton, S_Searching can find the recommenders very efficiently. Experimental results show that S_Searching can find almost the same number of recommenders as that of conducting full search, which is much more than that of applying the classical searching mechanism in the scale-free network, while the computational complexity and cost is much less.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

Merging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems

In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...

متن کامل

Modeling a Smart Hospital Information Architecture Based on Internet of Things and Recommender Agent

Introduction: Today, healthcare organizations worldwide are aware of the significance of technology and its impact on the quality of care. Hospitals are one of the most crucial systems in which the utilization of information is particularly important for several reasons. Using discrete-event simulation and developing a recommender agent, this study aimed to allocate IoT devices to patients in s...

متن کامل

Context-Aware Recommender Systems: A Review of the Structure Research

 Recommender systems are a branch of retrieval systems and information matching, which through identifying the interests and requires of the user, help the users achieve the desired information or service through a massive selection of choices. In recent years, the recommender systems apply describing information in the terms of the user, such as location, time, and task, in order to produce re...

متن کامل

An Effective Algorithm in a Recommender System Based on a Combination of Imperialist Competitive and Firey Algorithms

With the rapid expansion of the information on the Internet, recommender systems play an important role in terms of trade and research. Recommender systems try to guess the user's way of thinking, using the in-formation of user's behavior or similar users and their views, to discover and then propose a product which is the most appropriate and closest product of user's interest. In the past dec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013